Главная · Android · Простые бесплатные программные средства разработки ПО для STM32. Начинаем изучать STM32 или Управляем светом по-умному Почему платная среда разработки

Простые бесплатные программные средства разработки ПО для STM32. Начинаем изучать STM32 или Управляем светом по-умному Почему платная среда разработки

Однажды, заехав в очередную съемную квартиру, я столкнулся с определенным неудобством, которое достаточно сильно напрягало: выключатель света в основной комнате оказался за шкафом-стенкой, который был прикручен к стене, и его перестановка была невозможна т.к. на это требовалось значительно много времени и сил. Решить данную проблему хотелось очень сильно и в голову пришла одна мысль: сделать дистанционный пульт для управления освещением!

Именно с идеи создания собственного пультика для управления светом в комнате и началось моё увлечение электроникой, микроконтроллерами и различными радиоустройствами.

После этого я начал изучать данную тему, знакомиться с основами электроники, примерами устройств, узнавать, как люди реализуют подобного рода устройства. Поискав информацию на тему того, с чего можно было бы начать изучение микроконтроллеров я узнал о том, что такое Arduino, с чем их едят, о том, как с ними работать. Легкое решение выглядело весьма привлекательно, ведь насколько я понял на тот момент, код собирается на раз-два. Но сделав вывод, что я не узнаю, что творится внутри микроконтроллера за рамками Arduino-скетчей я решил поискать более интересный вариант, который подразумевал глубокое изучение и погружение в дебри микроконтроллерной техники.

В компании, в которой я работаю, имеется отдел разработки, и я решил обратиться к инженерам чтобы они направили меня на путь истинный и показали с чего можно было бы начать решение своей задачи. Меня решительно отговорили от изучения Arduino и у меня в руках оказалась неведомая и непонятная зеленая платка на которой виднелись надписи, буковки, разные электронные компоненты.

Всё это для меня на тот момент показалось непостижимо сложным, и я даже пришел в некоторое смятение, но от реализации поставленной задачи отказываться не собирался. Так я познакомился с семейством микроконтроллеров STM32 и платой STM32F0-Discovery, после изучения которых мне хотелось бы сваять свой девайс под нужные мне цели.

К моему большому удивлению, такого большого комьюнити, статей, примеров, различных материалов по STM не было в таком же изобилии как для Arduino. Конечно, если поискать найдется множество статей «для начинающих» где описано, как и с чего начать. Но на тот момент мне показалось, что все это очень сложно, не рассказывались многие детали, интересные для пытливого ума новичка, вещи. Многие статьи хоть и характеризовались как «обучение для самых маленьких», но не всегда с их помощью получалось достичь требуемого результата, даже с готовыми примерами кода. Именно поэтому я решил написать небольшой цикл статей по программированию на STM32 в свете реализации конкретной задумки: пульт управления освещением в комнате.

Почему не AVR/Arduino?

Предвосхищая высказывания о том, что неопытному новичку бросаться сразу же в изучение такого сложного МК как STM32 было бы рановато - я расскажу, почему я решил пойти именно этим путём, не вникая и не знакомясь с семейством процессоров от Atmel и даже не рассматривая Arduino как вариант.

Во-первых, решающую роль сыграло отношение цена-функционал, разницу видно даже между одним из самых дешевых и простых МК от ST и достаточно «жирной» ATMega:


После того, что я увидел значительные различия между ценой и возможностями AVR и STM32 – мною было принято решение, что AVR использовать в своей разработке я не буду =)

Во-вторых, я предварительно для себя старался определить набор умений и навыков, которые бы я получил к моменту, когда я достигну требуемого результата. В случае если бы я решил использовать Arduino – мне было бы достаточно скопировать готовые библиотеки, накидать скетч и вуаля. Но понимание того, как работают цифровые шины, как работает радиопередатчик, как это всё конфигурируется и используется – при таком раскладе мне бы не пришло бы никогда. Для себя я выбрал самый сложный и тернистый путь, чтобы на пути достижения результата – я бы получил максимум опыта и знаний.

В-третьих, любой STM32 можно заменить другим STM32, но с лучшими характеристиками. Причем без изменения схемы включения.

В-четвертых, люди, занимающиеся профессиональной разработкой больше склонны к использованию 32-разрядных МК, и чаще всего это модели от NXP, Texas Instruments и ST Microelectronics. Да и мне можно было в любой момент подойти к своим инженерам из отдела разработки и разузнать о том, как решить ту или иную задачу и получить консультацию по интересующим меня вопросам.

Почему стоит начинать изучение микроконтроллеров STM32 с использования платы Discovery?

Как вы уже поняли, знакомство и изучение микроконтроллера STM32 мы начнем с Вами, уважаемые читатели, с использования платы Discovery. Почему именно Discovery, а не своя плата?

Что нам понадобится для разработки помимо платы Discovery?

В своей работе с платой Discovery нам понадобится еще ряд незаменимых вещей, без которых мы не сможем обойтись:

Приступим к первоначальной настройке и подготовке IDE к работе!

После того, как скачается установочный файл нашей IDE можно приступать к установке. Следуя указаниям инсталлятора проведите процесс установки. После того, как скопируются все файлы, необходимые для работы появится окно установщика софтовых пакетов для разработки Pack Installer . В данном установщике содержатся низкоуровневые библиотеки, Middleware, примеры программ, которые регулярно пополняются и обновляются.


Для начала работы с нашей платой нам необходимо установить ряд пакетов необходимых для работы и необходимо найти микроконтроллер, с которым мы будем работать. Так же можно воспользоваться поиском вверху окна. После того, как мы нашли наш МК кликаем на него и во второй половине окна и нам необходимо установить следующий перечень библиотек:
  1. Keil::STM32F0xx_DFP – полноценный пакет программного обеспечения для конкретного семейства микроконтроллеров, включающий в себя мануалы, даташиты, SVD-файлы, библиотеки от производителя.
  2. ARM::CMSIS – пакет Cortex Microcontroller Software Interface Standard, включающий в себя полный набор библиотек от ARM для поддержки ядра Cortex.
  3. Keil::ARM_Compiler – последняя версия компилятора для ARM.
После установки требуемых паков можно перейти к настройке IDE и нашего отладчика/программатора. Для этого нам необходимо открыть главное окно Keil и создать новый проект.


Для этого необходимо перейти в меню Project -> New uVision Project и выбрать папку, в которую сохраним наш проект.

После Keil спросит нас какой МК будет использоваться в проекте. Выбираем нужный нам МК и нажимаем ОК .


И вновь появится, уже знакомое нам, окно в котором мы можем подключить интересующие нас модули к проекту. Для нашего проекта понадобится два модуля:
  1. Ядро библиотеки CMSIS , в котором объявлены настройки, адреса регистров и многое другое из того что необходимо для работы нашего МК.
  2. Startup-файл , который отвечает за первоначальную инициализацию МК при старте, объявление векторов и обработчиков прерываний и многое другое.
Если все зависимости у подключаемых удовлетворены – менеджер будет нам сигнализировать об этом зеленым цветом:


После того как мы нажмем клавишу ОК мы можем приступать к созданию нашего проекта.

Для того, чтобы сконфигурировать параметры проекта и настроить наш программатор нужно правым кликом по Target 1 открыть соответствующее меню.


В главном меню проекта настраиваем параметр Xtal в значение 8.0 MHz . Данный параметр отвечает за частоту работы кварцевого осциллятора нашего МК:


Далее переходим к настройке нашего программатора/дебагер. Кликаем в этом же окне на вкладку Debug и выбираем в поле Use параметр ST-Link Debugger и переходим в настройки:


В настройках мы должны увидеть модель нашего ST-Link установленного на плате, его серийный номер, версию HW и IDCODE МК который будем прошивать:

Для удобства можно настроить параметр, отвечающий за то, чтобы МК сбрасывался автоматически после перепрошивки. Для этого нужно поставить галочку в поле Reset and Run .


После этого нужно настроить еще одну опцию, которая позволит нам писать русскоязычные комментарии к коду наших проектов. Нажимаем кнопку Configuration и в открывшемся меню в поле Encoding выбираем Russian Windows-1251 .


Всё. Наша IDE и программатор готовы к работе!

В Keil имеется удобный навигатор по проекту, в котором мы можем видеть структуру проекта, необходимые для работы справочные материалы, в т. ч. те, которые мы уже скачали к себе на компьютер до этого (схема Discovery, datasheet, reference manual), список функций, использованных в проекте и шаблоны для быстрой вставки разных языковых конструкций языка программирования.


Переименуем папку в структуре проекта с Source Group 1 на App/User , таким образом обозначив то, что в данной папке у нас будут располагаться файлы пользовательской программы:


Добавим основной файл программы через навигатор проекта, выполнив команду Add New Item To Group “App/User” .


Необходимо выбрать из предложенного списка C File (.c) и назначить ему имя main.c :


Созданный файл автоматически добавится в структуру проекта и откроется в главном окне программы.

Что ж, теперь мы можем приступить к созданию нашей программы.

Первым делом, необходимо подключить к нашему исполняемому файлу заголовочный документ нашего семейства микроконтроллеров. Добавим в файл main.c строки следующего содержания, данная программа заставить попеременно моргать наши светодиоды:

/* Заголовочный файл для нашего семейства микроконтроллеров*/ #include "stm32f0xx.h" /* Тело основной программы */ int main(void) { /* Включаем тактирование на порту GPIO */ RCC->AHBENR |= RCC_AHBENR_GPIOCEN; /* Настраиваем режим работы портов PC8 и PC9 в Output*/ GPIOC ->MODER = 0x50000; /* Настраиваем Output type в режим Push-Pull */ GPIOC->OTYPER = 0; /* Настраиваем скорость работы порта в Low */ GPIOC->OSPEEDR = 0; while(1) { /* Зажигаем светодиод PC8, гасим PC9 */ GPIOC->ODR = 0x100; for (int i=0; i<500000; i++){} // Искусственная задержка /* Зажигаем светодиод PC9, гасим PC8 */ GPIOC->ODR = 0x200; for (int i=0; i<500000; i++){} // Искусственная задержка } }
После того, как мы написали нашу программу, настала пора скомпилировать код и загрузить прошивку в наш МК. Чтобы скомпилировать код и загрузить можно воспользоваться данным меню.

В последние годы 32 разрядные микроконтроллеры (МК) на основе процессоров ARM стремительно завоёвывают мир электроники. Этот прорыв обусловлен их высокой производи тельностью, совершенной архитектурой, малым потреблением энергии, низкой стоимостью и развитыми средствами программирования.

КРАТКАЯ ИСТОРИЯ
Название ARM является аббревиатурой Advanced RISC Machines, где RISC (Reduced Instruction Set Computer) обозначает архитектуру процессоров с сокращённым набором команд. Подавляющее число популярных МК, а пример семейства PIC и AVR, также имеют архитектуру RISC, которая позволила увеличить быстродействие за счёт упрощения декодирования инструкций и ускорения их выполнения. Появление совершенных и производительных 32 разрядных ARMмикроконтроллеров позволяет перейти к решению более сложных задач, с которыми уже не справляются 8 и 16 разрядные МК. Микропроцессорная архитектура ARM с 32 разрядным ядром и набором команд RISC была разработана британской компанией ARM Ltd, которая занимается исключительно разработкой ядер, компиляторов и средств отладки. Компания не производит МК, а продаёт лицензии на их производство. МК ARM – один из быстро развивающихся сегментов рынка МК. Эти приборы используют технологии энергосбережения, поэтому находят широкое применение во встраиваемых системах и доминируют на рынке мобильных устройств, для которых важно низкое энергопотребление. Кроме того, ARM микроконтроллеры активно применяются в средствах связи, портативных и встраиваемых устройствах, где требуется высокая производительность. Особенностью архитектуры ARM является вычислительное ядро процессора, не оснащённое какими либо дополнительными элементами. Каждый разработчик процессоров должен самостоятельно до оснастить это ядро необходимыми блоками под свои конкретные задачи. Такой подход хорошо себя зарекомендовал для крупных производителей микросхем, хотя изначально был ориентирован на классические процессорные решения. Процессоры ARM уже прошли несколько этапов развития и хорошо известны семействами ARM7, ARM9, ARM11 и Cortex. Последнее делится на подсемейства классических процессоров CortexA, процессоров для систем реального времени CortexR и микропроцессорные ядра CortexM. Именно ядра CortexM стали основой для разработки большого класса 32 разрядных МК. От других вариантов архитектуры Cortex они отличаются, прежде всего, использованием 16разрядного набора инструкций Thumb2. Этот набор совмещал в себе производительность и компактность «классических» инструкций ARM и Thumb и разрабатывался специально для работы с языками С и С++, что существенно повышает качество кода. Большим достоинством МК, построенных на ядре CortexM, является их программная совместимость, что теоретически позволяет использовать программный код на языке высокого уровня в моделях разных производителей. Кроме обозначения области применения ядра, разработчики МК указывают производительность ядра CortexM по десятибалльной шкале. На сегодняшний день самыми популярными вариантами являются CortexM3 и CortexM4. МК с архитектурой ARM производят такие компании, как Analog Devices, Atmel, Xilinx, Altera, Cirrus Logic, Intel, Marvell, NXP, STMicroelectronics, Samsung, LG, MediaTek, MStar, Qualcomm, SonyEricsson, Texas Instruments, nVidia, Freescale, Миландр, HiSilicon и другие.
Благодаря оптимизированной архитектуре стоимость МК на основе ядра CortexM в некоторых случаях даже ни же, чем у многих 8разрядных приборов. «Младшие» модели в настоящее время можно приобрести по 30 руб. за корпус, что создаёт конкуренцию предыдущим поколениям МК. МИКРОКОНТРОЛЛЕРЫ STM32 Рассмотрим наиболее доступный и широко распространённый МК семейства STM32F100 от компании STMicroelectronics , которая является одним из ведущих мировых производителей МК. Недавно компания объявила о начале производства 32битного МК, использующего преимущества индустриального
ядра STM32 в недорогих приложениях. МК семейства STM32F100 Value line предназначены для устройств, где не хватает производительности 16разрядных МК, а богатый функционал «обычных» 32разрядных приборов является избыточным. Линейка МК STM32F100 базируется на современном ядре ARM CortexM3 с периферией, оптимизированной для применения в типичных приложениях, где использовались 16разрядные МК. Производительность МК STM32F100 на тактовой частоте 24 МГц превосходит большинство 16разрядных МК. Данная линейка включает приборы с различными параметрами:
● от 16 до 128 кбайт флэшпамяти программ;
● от 4 до 8 кбайт оперативной памяти;
● до 80 портов ввода вывода GPIO;
● до девяти 16разрядных таймеров с расширенными функциями;
● два сторожевых таймера;
● 16канальный высокоскоростной 12разрядный АЦП;
● два 12разрядных ЦАП со встроенными генераторами сигналов;
● до трёх интерфейсов UART с поддержкой режимов IrDA, LIN и ISO7816;
● до двух интерфейсов SPI;
● до двух интерфейсов I2С с поддержкой режимов SMBus и PMBus;
● 7канальный блок прямого доступа к памяти (DMA);
● интерфейс CEC (Consumer Electronics Control), включённый в стандарт HDMI;
● часы реального времени (RTC);
● контроллер вложенных прерываний NVIC.

Функциональная схема STM32F100 представлена на рисунке 1.

Рис. 1. Архитектура МК линейки STM32F100

Дополнительным удобством является совместимость приборов по выводам, что позволяет, при необходимости, использовать любой МК семейства с большей функциональностью и памятью без переработки печатной платы. Линейка контроллеров STM32F100 производится в трёх типах корпусов LQFP48, LQFP64 и LQFP100, имеющих, соответственно, 48, 64 и 100 выводов. Назначение выводов представлено на рисунках 2, 3 и 4. Такие корпуса можно устанавливать на печатные платы без применения специального оборудования, что является весомым фактором при мелкосерийном производстве.


Рис. 2. МК STM32 в корпусе LQFP48 Рис. 3. МК STM32 в корпусе LQFP64


Рис. 4. МК STM32 в корпусе LQFP100

STM32F100 – доступный и оптимизированный прибор, базирующийся на ядре CortexM3, поддерживается развитой средой разработки МК семейства STM32, которая содержит
бесплатные библиотеки для всей пе риферии, включая управление двига телями и сенсорными клавиатурами.

СХЕМА ВКЛЮЧЕНИЯ STM32F100C4
Рассмотрим практическое использование МК на примере самого простого прибора STM32F100C4, который, тем не менее, содержит все основные блоки линейки STM32F100. Принципиальная электрическая схема включения STM32F100C4 представлена на рисунке 5.


Рис. 5. Схема включения МК STM32F100C4

Конденсатор С1 обеспечивает сброс МК при включении питания, а конденсаторы С2-С6 фильтруют напряжение питания. Резисторы R1 и R2 ограничивают сигнальный ток выводов МК. В качестве источника тактовой частоты используется внутренний генератор, поэтому нет необходимости применять внешний кварцевый резонатор.


Входы BOOT0 и BOOT1 позволяют выбрать способ загрузки МК при включении питания в соответствии с таб лицей. Вход BOOT0 подключён к шине нулевого потенциала через резистор R2, который предохраняет вывод BOOT0 от короткого замыкания при его использовании в качестве выход ного порта PB2. С помощью соединителя J1 и одной перемычки можно из менять потенциал на входе BOOT0, определяя тем самым способ загрузки МК – из флэшпамяти или от встроенного загрузчика. При необходимости загрузки МК из оперативной памяти аналогичный соединитель с перемычкой можно подключить и к входу BOOT1.
Программирование МК осуществляется через последовательный порт UART1 или через специальные программаторы – отладчики JTAG или STLink. Последний входит в состав популярного отладочного устройства STM32VLDISCOVERY , изображённого на рисунке 6. На плате STM32VLDIS COVERY 4контактный разъём программатора – отладчика STLink – имеет обозначение SWD. Автор статьи предлагает программировать МК через последовательный порт UART1, поскольку это значительно проще, не требует специального оборудования и не уступает в скорости JTAG или ST Link. В качестве управляющего устройства, способного формировать команды и отображать результаты работы про граммы МК, а также в качестве программатора можно использовать любой персональный компьютер (ПК), имеющий последовательный COM порт или порт USB с преобразователем USBRS232.

Для сопряжения COMпорта ПК с МК подойдет любой преобразователь сиг налов RS232 в уровни логических сигналов от 0 до 3,3 В, например, микросхема ADM3232. Линия передачи TXD последовательного порта компьютера, после преобразователя уровней, должна подключаться к входу PA10 микроконтроллера, а линия приёмника RXD, через аналогичный преобразователь, – к выходу PA9.

При необходимости использования энергонезависимых часов МК, к нему следует подключить элемент питания типа CR2032 с напряжением 3 В и кварцевый резонатор на частоту 32768 Гц. Для этого МК оснащён выводами Vbat/GND и OSC32_IN/OSC32_OUT. Предварительно вывод Vbat необходимо отключить от шины питания 3,3 В.

Оставшиеся свободными выводы МК можно использовать по необходимости. Для этого их следует подключить к разъёмам, которые расположены по периметру печатной платы для МК, по аналогии с популярными устройствами Arduino и отладочной платой STM32VLDISCOVERY .


Рис. 6. Отладочное устройство STM32VLDISCOVERY


Схема электрическая принципиальная STM32VLDISCOVERY.

Таким образом, в зависимости от назначения и способа применения МК, к нему можно подключать необходимые элементы, чтобы задействовать другие функциональные блоки и пор ты, например, ADC, DAC, SPI, I2C и т.п. В дальнейшем эти устройства будут рас смотрены подробнее.

ПРОГРАММИРОВАНИЕ
Сегодня многие компании предлагают средства для создания и отладки программ микроконтроллеров STM32. К их числу относятся Keil от ARM Ltd, IAR Embedded Workbench for ARM, Atol lic TrueStudio, CooCox IDE, GCC и Eclipse IDE. Разработчик может выбрать про граммные средства по своему пред почтению. Ниже будет описан инструментарий Keil uVision 4 от компании Keil , который поддерживает огромное число типов МК, имеет развитую систему отладочных средств и может быть использован бесплатно с ограничениями размера генерируемого кода 32 кбайт (что, фактически, максимально для рассматриваемых МК).

Простой и быстрый старт с CooCox CoIDE.

Итак приступим. Идем на официальный сайт CooCox и качаем последнюю версию CooCox CoIDE . Для скачивания необходимо зарегистрироваться, регистрация простая и бесплатная. Затем инсталлируем скачанный файл и запускаем.

CooCox CoIDE — среда разработки, на базе Eclipse, которая помимо STM32 поддерживает кучу других семейств микроконтроллеров: Freescale, Holtek, NXP, Nuvoton, TI, Atmel SAM, Energy Micro и др. С каждой новой версией CoIDE список МК постоянно пополняется. После успешной установки CoIDE запускаем:

Появится стартовое окно Step 1, в котором необходимо выбрать производителя нашего микроконтроллера. Нажимаем ST и переходим к Step 2 (выбор микроконтроллера), в котором необходимо выбрать конкретную модель. У нас STM32F100RBT6B, поэтому нажимаем на соответствующую модель:

Справа, в окне Help отображаются краткие характеристики каждого чипа. После выбора нужного нам микроконтроллера переходим к третьему шагу Step 3 — к выбору необходимых библиотек для работы:

Давайте создадим простейший проект для мигания светодиодом, как это принято для изучения микроконтроллеров.

Для этого нам понадобится библиотека GPIO, при включении которой, CoIDE попросит создать новый проект. На это предложение нажимаем Yes, указываем папку где будет храниться наш проект и его название. При этом, CoIDE подключит к проекту 3 другие, необходимые для работы библиотеки, а также создаст всю необходимую структуру проекта:

Чем еще хорош CoIDE, это тем, что в нем есть возможность загружать примеры прямо в среду разработки. В вкладке Components вы можете видеть, что почти к каждой библиотеке есть примеры, нажимаем на GPIO (with 4 examples) и видим их:

Туда можно добавлять и свои примеры. Как видно на скриншоте выше, в примерах уже присутствует код для мигания светодиодом GPIO_Blink. Можно нажать кнопку add и он добавиться в проект, но как подключаемый файл, поэтому мы сделаем по другому просто скопируем весь код примера в файл main.c. Единственное, строку void GPIO_Blink(void) замените на int main(void). Итак, нажимаем F7 (или в меню выбираем Project->Build), чтобы скомпилировать проект и… не тут то было!

Среде нужен компилятор GCC, а у нас его нет. Поэтому идем на страничку GNU Tools for ARM Embedded Processors , справа выбираем тип вашей ОС и качаем последнюю версию тулчайна. Затем запускаем файл и инсталируем gcc toolchain. Далее, в настройках CoIDE укажем правильный путь к тулчайну:

Опять нажимаем F7 (Project->Build) и видим, что компиляция прошла успешно:

Осталось прошить микроконтроллер. Для этого при помощи USB подключаем нашу плату к компьютеру. Затем, в настройках дебаггера необходимо поставить ST-Link, для этого в меню выбираем Project->Configuration и открываем вкладку Debugger. В выпадающем списке выбираем ST-Link и закрываем окно:

Попробуем прошить МК. В меню выбираем Flash->Program Download (или на панели инструментов щелкаем по соответствующей иконке) и видим, что МК успешно прошит:

На плате наблюдаем мигающий светодиод, видео или фото я думаю приводить нет смысла, т.к. все это видели.

Также, в CoIDE работают различные режимы отладки, для этого нажимаем CTRL+F5 (или в меню Debug->Debug):

На этом все. Как видите, настройка среды CoIDE и работа с ней очень проста. Надеюсь данная статья подтолкнет вас в изучении очень перспективных и недорогих микроконтроллеров STM32.

Все картинки в этой статье кликабельны.

Микроконтроллеры содержат микропроцессорное ядро ARM , точнее ARM Cortex-M. Это ядро присуще не только микроконтроллерам STM32, оно существует само по себе, и на его основе выпускается множество микроконтроллеров от разных производителей.

Тогда находим этот микроконтроллер в списке слева и устанавливаем соответствующий пакет DFP:

Можно заметить, что среди установленных пакетов есть CMSIS. CMSIS - это библиотека для ядра Cortex-M, общая для всех микроконтроллеров. Библиотека разрабатывается фирмой ARM и доступна для скачивания с официального сайта после регистрации. Можно было бы не устанавливать этот пакет, а пользоваться официальным выпуском библиотеки, но это дополнительные сложности.

Закрываем менеджер пакетов и запускаем Keil uVision5 (произносится мю-вижен):

Keil uVision5 - это часть MDK-ARM, графический интерфейс среды, который включает редактор кода:

  1. Кодировка UTF-8.
  2. Правая граница кода в 80 символов.
  3. Отступы по 4 пробела.

Эти настройки довольно спорные. У каждого разработчика свои предпочтения.

Теперь создаем проект. Для этого выбираем меню «Project -> New uVision Project…». В открывшемся окне выбираем расположение и имя проекта. Для проекта лучше создать отдельную папку и сохранить проект туда.

После сохранения появится окно выбора устройства. Выбираем нужный микроконтроллер и нажимаем «ОК». Если бы мы не установили нужный пакет, то микроконтроллера не было бы в списке:

В следующем окне предстоит выбрать компоненты, которые будут использоваться в проекте. Необходимо выбрать «CMSIS:CORE» и «Device:Startup»:

После нажатия «OK» процесс создания проекта завершится.

В дальнейшем вы всегда сможете запустить окно выбора компонентов, чтобы добавить или удалить их. Для этого надо выбрать меню «Project -> Manage -> Run-Time Evironment…».

При выборе компонентов может оказаться, что какой-то компонент зависит от других компонентов, которые вы не выбрали. Об этом вы узнаете из сообщений в нижней части окна. Необходимо будет выбрать зависимые компоненты.

После создания проекта описанным способом, в окне справа вы увидите следующую структуру проекта:

Здесь мы видим название проекта «example», цель проекта «Target 1», пустую группу файлов «Source Group 1», компоненты CMSIS и Device.

Целей проекта может быть сколько угодно. Цель включает в себя важнейшие настройки проекта в том числе выбор микроконтроллера. Цели нужны, чтобы можно было собрать программу разными способами для одних и тех же файлов исходного кода. Например, вам может понадобиться, чтобы проект охватывал множество микроконтроллеров.

Группы файлов нужны, чтобы красиво группировать файлы исходного кода. Группы помогают легко ориентироваться в файлах в большом проекте. Например, у вас может быть группа файлов, отвечающих за светодиоды, и отдельная группа с файлами для взаимодействия с USB.

В структуре мы видим два файла. Один с расширением «s». Он содержит исходный код на языке ассемблера. Другой с расширением «с». Он содержит исходный код на языке Си.

Собрать проект и получить файл прошивки можно нажав клавишу F7. Но в таком виде проект не будет собран и вы получите ошибку, потому что отсутствует функция «main()».

Функция «main()» - это точка входа в вашу программу, то с чего начинается программа. Ее наличие обязательно если вы пишите программу на языке Си.

Давайте создадим эту функцию. Кликнем на группе «Source Group 1» правой кнопкой и выберем «Add New Item to ‘Source Group 1’…» (перевод: добавить новый элемент в группу ‘Source Group 1’). Создадим файл «main.c»:

В созданный файл добавим код:

Int main() { return 0; }

В конец файла стоит добавить пустую строку, иначе при сборке вы получите предупреждение «warning: #1-D: last line of file ends without a newline».

Теперь проект можно собрать клавишей F7. В результате вы получите файл «Objects\example.axf» (по умолчанию имя файла совпадает с именем проекта). Файл располагается в папке с проектом.

Обычно разработчику требуется файл прошивки в формате Intel HEX . Чтобы получить его, надо произвести настройку цели. Чтобы увидеть настройки цели нажмите Alt-F7, перейдите на вкладку «Output» и выберите «Create HEX File».

После очередной сборки вы получите файл «Objects\example.hex».

Сейчас программа не делает ничего, и прошивать ее бессмысленно. Давайте напишем программу, которая управляет состоянием ножки микроконтроллера.

Запустим выбор компонентов с помощью меню «Project -> Manage -> Run-Time Evironment…» и выберем компонент «Device:STM32Cube Hal:GPIO».

В нижней части окна мы увидим неудовлетворенную зависимость «Device:STM32Cube Hal:Common». Выберем этот компонент и увидим еще больший список зависимостей. Необходимо выбрать все требуемые зависимости:

  • Device:STM32Cube Hal:Common
  • Device:STM32Cube Hal:RCC
  • Device:STM32Cube Hal:PWR
  • Device:STM32Cube Hal:Cortex
  • Device:STM32Cube Framework:Classic

STM32Cube - это библиотека, которую предоставляет STMicroelectronics.

При выборе компонентов мы выбираем какие возможности этой библиотеки использовать.

Микроконтроллер, кроме ядра, содержит большое количество периферийных устройств: АЦП, ЦАП, таймеры, различные интерфейсы и многое другое. Каждое периферийное устройство имеет свое название. Например, устройство для работы с портами микроконтроллера называется GPIO, об этом можно узнать из документации на микроконтроллер.

Библиотека STM32Cube многоуровневая, то есть включает в себя множество промежуточных библиотек. Одна из промежуточных библиотек называется STM32Cube HAL, или просто HAL. Она поделена на модули и каждый модуль соответствует какому-нибудь периферийному устройству. Название модуля совпадает с названием устройства, например, имеется модуль GPIO.

Существует большое количество документации по STM32Cube . Но основное описание по работе с периферийными устройствами содержится в . Это руководство разработчик использует большую часть времени. Обратимся к нему, чтобы заставить шевелиться ножки микроконтроллера.

Для начала подключим HAL в нашей программе, добавив строчку перед определением функции «main()»:

#include "stm32f4xx_hal.h"

В самом начале функции «main()» вызовем функцию «HAL_Init()», которая инициализирует библиотеку.

Таким образом мы получим следующий код в файле «main.c»:

#include "stm32f4xx_hal.h" int main() { HAL_Init(); return 0; }

Продолжение следует…

На этом я вынужден прервать свою статью, так как в данный момент мне не на чем отлаживать программу, то есть нет под рукой отладочной платы.

Я написал программу, которая собирается и теоретически должна работать, но я не хочу вводить в заблуждение читателя. Выше изложенный материал считаю полезным и без конечного результата.

#include "stm32f4xx_hal.h" int main() { HAL_Init(); // Разрешить тактирование порта A. __HAL_RCC_GPIOA_CLK_ENABLE(); // Настройки порта. GPIO_InitTypeDef s; s.Pin = GPIO_PIN_0; // Вывод 0. s.Mode = GPIO_MODE_OUTPUT_PP; // Цифровой выход. s.Pull = GPIO_NOPULL; // Без подтяжки. s.Speed = GPIO_SPEED_FREQ_VERY_HIGH; // Максимальная скорость. // Настроить вывод 0 порт A. HAL_GPIO_Init(GPIOA, &s); // Бесконечно переключать состояние порта с максимальной скоростью. while(1) { HAL_GPIO_TogglePin(GPIOA, GPIO_PIN_0); } //return 0; } void SysTick_Handler(void) { HAL_IncTick(); }

Ссылки

  1. Скринкаст «Eclipse и GNU Tools для разработки под ARM-микроконтроллеры «.
  2. Микроконтроллер STM32F407VG .
  3. Отладочная плата STM32F4-Discovery .
  4. Библиотека STM32CubeF4 .

Нам понадобятся следующие пакеты, часть из которых уже упоминалась в предыдущем посте:

yaourt -S arm-none-eabi-gcc arm-none-eabi-gdb \
arm-none-eabi-newlib stlink stm32cubemx openocd

Здесь приведены названия пакетов для Arch Linux , но я довольно уверен, что в других дистрибутивах Linux они называются так же, или как-то похоже. Если вам не удастся найти готовый пакет с STM32CubeMX, программу можно скачать отсюда (потребуется регистрация). Для работы приложению требуется виртуальная машина Java . Несмотря на то, что программа имеет расширение.exe, она превосходно запускается в Linux через java -jar file.exe .

Опционально вы также можете загрузить программу STLinkUpgrade, доступную для скачивания (также потребуется регистрация). Эта программа предназначена для обновления прошивки программаторов STLink, что нередко приводит к исправлению багов, ну или как минимум к лучшим сообщениям об ошибках. Как и STM32CubeMX, эта программа написана на Java.

Необходимое железо

Помимо профессионального софта нам также понадобится профессиональное железо. Плата Blue Pill, рассмотренная в прошлом посте, в целом неплоха, но пользоваться ею несколько неудобно. В частности, к ней приходится подсоединять внешний программатор с его лишними проводами. Плюс STM32CubeMX про эту плату ничего не знает, что также вносит свою долю неудобства. Наконец, если у вас этой платы еще нет, вам придется ждать ее доставки с AliExpress.

Компания STMicroelectronics производит собственные отладочные платы серий Discovery и Nucleo. Последние являются более новыми, поэтому сосредоточим свое внимание на них. Платы STM32 Nucleo имеют встроенный отладчик STLink v2.1, что избавляет нас от лишних проводов. Они до определенной степени совместимы с Arduino-шилдами, что может пригодиться. Цены на платы Nucleo в России начинаются от 19$ за плату Nucleo-F030R8 , притом купить ее можно в любом Чип-и-Дипе хоть сегодня.

Лично я взял плату помощнее — Nucleo-F411RE , на вырост, так сказать:

На двух других вкладках с названиями Clock Configuration и Configuration в этот раз нам ничего менять не придется. На вкладке Power Consumtion Calculator можно оценить энергопотребление микроконтроллера и время его работы в зависимости от выбранного аккумулятора и рабочего напряжения. Надо сказать, довольно любопытная и полезная возможность.

На этом с настройкой покончено. Говорим Project → Generate Code. Во вкладке Project вводим имя проекта (Project Name), выбираем родительский каталог для этого проекта (Prоject Location), в выпадающем списке Toolchain / IDE выбираем вариант «Makefile». Во вкладке Code Generator стоит выбрать опцию «Add necessary library files as reference in the toolchain project configuration file». Иначе в ваш проект будут скопированы все библиотечные файлы, а это более 160 Мб. Затем жмем ОК. Проект STM32CubeMX автоматически сохранится в каталоге с исходным кодом (файл с расширением.ioc), поэтому отдельно сохранять его не требуется.

Makefile в получившемся проекте нужно немного подправить. Во-первых, нужно исправить значение переменных BINPATH и PREFIX :

BINPATH =/ usr/ bin
PREFIX =arm-none-eabi-

В противном случае не будут найдены исполняемые файлы компилятора.

Во-вторых, стоит найти переменную OPT и дописать в нее флаг -Wall :

OPT = -Og -Wall

Иначе компилятор не будет ругаться на код, который скорее всего содержит ошибки — например, выражение if (arr[ i] = 1 ) , на месте которого почти наверняка должно быть if (arr[ i] == 1 ) .

В-третьих, если после этого шага сказать make , вы можете получить ошибки вроде следующих:

На момент написания этих строк в STM32CubeMX был баг, заключавшийся в том, что он несколько раз включал одни и те же файлы в список C_SOURCES . Нужно найти этот список в Makefile и убрать из него все повторы.

В-четвертых, Makefile умеет компилировать проект, но не содержит таргетов для прошивания платы, ее очистки, а также подключения по UART. Стоит дописать:

# проверьте, что для отступа используется табуляция, а не пробелы!
flash: all
st-flash --reset write build/ $(TARGET) .bin 0x8000000
erase:
st-flash --reset erase
uart:
screen / dev/ ttyACM0

Наконец, из соображений скорее перфекционизма, чем острой надобности, я бы заменил все абсолютные пути на относительные, введя переменную вроде:

FIRMWARE = $(HOME) / STM32Cube/ Repository/ STM32Cube_FW_F4_V1.18.0

… а также прогнал бы Makefile через утилиту dos2unix.

На этом подготовку шаблона/каркаса можно считать завершенной! Чтобы не проделывать описанные выше шаги при создании каждого нового проекта, шаблон стоит сохранить где-нибудь в надежном месте. Дабы не приходилось при повторном использовании этого шаблона редактировать имя проекта, стоит также отредактировать значение переменной TARGET на какое-нибудь абстрактное main .

Пишем код!

Если вы откроете файл Src/main.c, то найдете в нем множество отметок вроде:

/* USER CODE BEGIN Includes */

/* USER CODE END Includes */

По задумке, код нужно вписывать между этими комментариями, чтобы при обновлении проекта в STM32CubeMX пользовательский код не был затерт. Лично я добавил вызов процедур init() и loop() в окрестностях основного цикла программы:

/* Infinite loop */
/* USER CODE BEGIN WHILE */
init() ;
while (1 )
{
loop() ;
/* USER CODE END WHILE */

/* USER CODE BEGIN 3 */
}
/* USER CODE END 3 */

… а сами процедуры объявил перед процедурой main() :

/* USER CODE BEGIN 0 */

void init(void ) {
/* do nothing, yet */
}

void loop(void ) {
/*
HAL_GPIO_WritePin(GPIOA, GPIO_PIN_5, GPIO_PIN_SET);
HAL_Delay(500);
HAL_GPIO_WritePin(GPIOA, GPIO_PIN_5, GPIO_PIN_RESET);
HAL_Delay(500);
*/

if (HAL_GPIO_ReadPin(GPIOC, GPIO_PIN_13) == GPIO_PIN_RESET) {
HAL_GPIO_TogglePin(GPIOA, GPIO_PIN_5) ;
}

HAL_Delay(100 ) ;
}

/* USER CODE END 0 */

Управление микроконтроллером осуществляется через библиотеку под названием HAL, Hardware Abstraction Layer. Как видите, что касается обычного чтения кнопок и мигания светодиодами, здесь все не намного сложнее, чем в случае с той же Arduino.

Подключаем плату и говорим make flash . Если все было сделано правильно, нажатие синей кнопки на плате будет приводить к переключению зеленого светодиода. Также можно оставить в процедуре loop() только код, который в приведенном выше отрывке я закомментировал, и тогда программа превратиться в обычный Blink.

Важно! Иногда микроконтроллер не запускается с новой прошивкой без нажатия черной кнопки Reset. По идее, обновление прошивки программатора с помощью утилиты STLinkUpgrade и использование утилиты st-flash с флагом --reset , как в нашем Makefile, исправляет эту проблему. Но так как она воспроизводится нерегулярно, полной уверенности нет.

Заключение

Как видите, все не так уж и сложно. Полученных знаний уже вполне достаточно, например, для того, чтобы написать программу, выводящую что-то на ЖК-экранчик или декодирующую сигнал от джойстика Sega . Можно даже пообщаться с какими-то сторонними модулями по SPI или I2C, хотя и не слишком эффективно, если вспомнить о наличии в микроконтроллере аппаратной поддержки этих протоколов. Однако эти темы, ровно как и ШИМ, чтение аналогового сигнала, работа с прерываниями или отладка кода, увы, выходят за рамки этой и без того уже довольно длинной статьи.

Полную версию исходников к этому посту, как обычно, вы найдете на GitHub .

А как вы разрабатываете под STM32?

Дополнение: Если вам понравилась эта заметка, вас могут заинтересовать статьи об обмене данными по UART , SPI , I2C и I2S в контексте микроконтроллеров STM32. Также обратите внимание на посты

Одна из причин популярности микроконтроллеров STM32 производства STMicroelectronics – разнообразие инструментов разработки и отладки. Это касается как аппаратных, так и программных средств. Существует возможность создания и отладки резидентного ПО для STM32 без материальных затрат с помощью набора бесплатных программ . В статье дан обзор наиболее значимых бесплатных программных инструментов разработки: ST MCU Finder, STM32CubeMX, SW4STM32, STM32 Studio .

Компания STMicroelectronics (ST) является крупнейшим производителем микроконтроллеров в мире, при этом большая часть приходится на семейства STM32. При разработке новых линеек контроллеров STMicroelectronics преследует несколько стратегических целей:

  • повышение производительности;
  • повышение уровня интеграции: рост объема памяти, расширение перечня периферии;
  • снижение потребления;
  • снижение стоимости.

Для любого инженера очевидно, что эти цели очень часто оказываются взаимоисключающими. По этой причине STMicroelectronics выпускает семейства и линейки микроконтроллеров с акцентом на то или иное из приведенных выше свойств. В настоящее время номенклатура включает десять семейств, каждое из которых имеет свои достоинства и занимает определенную нишу на рынке (рисунок 1).

Дадим краткую характеристику семействам микроконтроллеров STM32 от ST.

Малопотребляющие микроконтроллеры семейств STM32L. Данная группа объединяет семейства, ориентированные, в первую очередь, на достижение минимального уровня потребления. Для этого используются различные методы: динамическое управление напряжением питания, гибкая система тактирования, специализированная периферия (LP-Timer, LP-UART), развитая система режимов пониженного потребления и так далее.

Базовые семейства STM32F0, STM32F1, STM32F3. Данная группа включает семейства со сбалансированными характеристиками и компромиссным значением производительности/потребления/цены.

В свою очередь отдельные пакеты STMCube включают:

  • аппаратно независимые библиотеки HAL для работы с аппаратными средствами микроконтроллеров;
  • библиотеки промежуточного уровня. Например, в состав самого развитого пакета ПО STM32CubeF7 входят следующие библиотеки и стеки: CMSIS-RTOS на базе FreeRTOS, стек TCP/IP на базе LwIP, файловая система FAT на базе FatFs с поддержкой NAND Flash, StemWin – графический стек на базе SEGGER emWin, полный стек USB (Host и Device). Для ряда семейств доступна библиотека Touch Library для сенсорных приложений;
  • примеры и шаблоны проектов для различных сред и отладочных наборов (Discovery, Nucleo, Evaluation Boards).

Чтобы понять, как происходит взаимодействие между составляющими программной платформы STM32Cube, следует обратиться к примеру, представленному на рисунке 9. В этом примере пользователь конфигурирует микроконтроллер с помощью STM32CubeMX. После окончания визуальной настройки (выводов, тактирования и прочего) STM32CubeMX генерирует С-код, для этого используются библиотеки из программного пакета STM32CubeF4. В результате пользователь получает завершенный С-проект, сформированный для конкретной интегрированной среды разработки: IAR™ EWARM, Keil™MDK-ARM, Atollic® TrueSTUDIO и AC6 System Workbench (SW4STM32). В этот проект уже включены все необходимые библиотеки и файлы.

Программа STM32CubeMX значительно упрощает работу программистов, однако ее возможности не безграничны. Прежде чем двигаться дальше, стоит отметить существующие ограничения :

  • генерируемый С-код охватывает только настройку блоков и периферии микроконтроллера. Это значит, что алгоритмическую часть программы автоматически сгенерировать нельзя, ее нужно будет дописать вручную;
  • STM32CubeMX поможет создать только стартовую конфигурацию. Иногда в процессе работы пользователю требуется изменить частоту работы периферийного блока или изменить конфигурацию вывода. Все это придется прописывать самостоятельно;
  • для генерации кода используются стандартные, разработанные ST, библиотеки нижнего уровня (HAL и LL) и промежуточного уровня, например, StemWin или STM32_USB_Device_Library;
  • в процессе генерации С-файл выстраивается таким образом, что для пользователя выделяются специальные секции, в которые он может помещать свой код. Если пользовательский код окажется вне этих рамок – он будет затерт при следующих генерациях;
  • существуют и другие ограничения для отдельных блоков, для более подробного ознакомления с которыми следует обратиться к руководству по STM32CubeMX.

Теперь, когда состав, принцип действия и ограничения STM32CubeMX описаны, можно привести пример работы с данной программой, создать «скелет» простейшего проекта и продемонстрировать работу отдельных утилит.

Создание простейшей программы с помощью STM32CubeMX

Рассмотрим подробнее создание скелета проекта в среде STM32CubeMX . Для начала требуется скачать саму среду STM32CubeMX. Это можно сделать абсолютно бесплатно с сайта ST. После установки на диске пользователя будут размещены как сам STM32CubeMX, так и папки с библиотеками STM32Cube.

Процесс создания скелета проекта выполняется по шагам.

Шаг первый. Скачивание актуальных версий библиотек с помощью специальной утилиты. Для этого вначале нужно настроить параметры сети (Help → Updater Settings) и далее запустить автоматическое обновление (Help → Check for Updates). Если ПК не подключен к сети – обновлять библиотеки придется вручную.

Шаг второй. После запуска STM32CubeMX на стартовом экране или в меню “File” необходимо создать новый проект, нажав “New Project”. Далее STM32CubeMX предложит выбрать целевую платформу: контроллер с заданными параметрами или отладочную плату. На рисунке 10 в качестве примера демонстрируется, как встроенный поиск подобрал список контроллеров по параметрам: семейство STM32F4, корпус TQFP100, объем Flash не менее 592 кбайт, ОЗУ более 214 кбайт.

Шаг третий. На третьем этапе разработчику предстоит определить назначение выводов с помощью Pin Wizard (рисунок 11). Данная утилита помогает создавать требуемую конфигурацию и проверять ее на ошибки. Стоит отметить и удобную систему подсветки, например, системные выводы закрашиваются бледно-желтым цветом.

Шаг четвертый. Настройка системы тактирования производится с помощью вкладки Clock Configuration (утилита Clock Wizard). При этом пользователь работает с визуализированным деревом тактирования (рисунок 12). С помощью Clock Wizard удается за нескольких щелчков мыши выбрать источник системного тактового сигнала, значения определителей и умножителей, а также источники тактирования периферийных блоков. При написании кода вручную для этого потребовалось бы приложить много усилий.

Шаг пятый. Создание С-кода начинается с выбора целевой интегрированной среды в настройках проекта (Project → Settings). В настоящий момент к услугам пользователя предлагаются: IAR™ EWARM, Keil™MDK-ARM, Atollic® TrueSTUDIO и AC6 System Workbench (SW4STM32) (рисунок 13). Далее на вкладке Code Generator следует определиться с составом копируемых в директорию проекта библиотек, настройками обработки пользовательского кода при регенерации (например, сохранять или удалять), настройками использования HAL (рисунок 13).

Для более детальной настройки генератора следует перейти на вкладку Advanced Settings (рисунок 14). Главной особенностью С-генератора в STM32CubeMX является возможность использования как HAL-, так и LL-драйверов. На этом моменте следует остановиться подробнее.

HAL – набор абстрактных драйверов, обеспечивающих максимальную кроссплатформенность среди контроллеров STM32. При этом некоторые драйверы являются абсолютно универсальными (подходят ко всем контроллерам STM32), а часть применима только к отдельным линейкам с соответствующими периферийными блоками (например, блоками шифрования). Главными достоинствами HAL являются :

  • максимальная кроссплатформенность;
  • функциональная ориентированность. Эти драйверы ориентированы не на работу с отдельными блоками контроллера, а на выполнение конкретных задач. Это дает возможность работать не с регистрами, а с осмысленными функциями;
  • не требуется глубокого знания архитектуры микроконтроллера.

Вместе с тем, у HAL есть и недостатки: значительный объем кода, недостаточная оптимизация выполнения задач, сравнительно малое быстродействие. Если эти недостатки являются критичными, то следует использовать LL-драйверы.

Low Layer APIs (LL) – аппаратно зависимые драйверы, позволяющие напрямую работать с периферией контроллера, в том числе – использовать inline-функции и выполнять атомарный доступ к регистрам . Такой подход не требует значительных затрат памяти, функции получаются максимально короткими и эффективными по скорости. Очевидными недостатками LL-драйверов являются снижение совместимости кода при переходе от одного контроллера к другому и необходимость глубокого знания особенностей архитектуры контроллера.

В рамках одно и того же проекта на STM32CubeMX можно одновременно использовать как HAL так и LL, но для разных периферийных блоков. Например, на рисунке 15 показаны настройки С-генератора, при которых для UART/TIM/RTC используются LL-драйверы, а для остальных блоков – HAL.

Шаг шестой. После настройки проекта следует выполнить генерацию кода, зайдя в меню Project → Generate Code. В результате этого в указанной директории проекта будет сгенерирован скелет проекта для заданной среды разработки.

Иногда возникает необходимость миграции проекта с одной платформы на другую. С помощью STM32CubeMX это можно сделать с минимальными затратами времени.

Миграция проектов с помощью STM32CubeMX

Для миграции проекта с одной платформы на другую используется дополнительная утилита File → Import Project (рисунок 15). В ней требуется указать тип нового микроконтроллера и режим миграции. После этого программа автоматически генерирует новый код либо, при наличии неполной совместимости ядер, указывает на возникшие сложности, предлагая пользователю их устранить.

Несовместимость, обнаруживаемая при миграции, может быть устранимой и неустранимой. Неустранимый случай возникает, когда состав периферии контроллеров значительно отличается. Например, ранее использовался модуль Ethernet, который отсутствует на новом МК (рисунок 15). Очевидно, что в таком случае миграция невозможна.

Но зачастую несовместимость имеет локальный характер, когда, например, необходимо всего лишь перенастроить параметры дерева тактирования, чтобы согласовать рабочие частоты, либо изменить номер канала АЦП или DMA и так далее (рисунок 16). В таких случаях STM32CubeMX предложит выполнить миграцию в ручном режиме с устранением появившихся сложностей с помощью редактирования проекта в рассмотренных выше утилитах. При этом STM32CubeMX будет сигнализировать пользователю о наличии проблем до их устранения.

После получения итогового скелета проекта останется добавить пользовательскую алгоритмическую часть кода, провести компиляцию и выполнить отладку. Для этого используются специализированные среды. Среда SW4STM32 для STM32 производства компании AC6 позволяет делать это абсолютно бесплатно.

AC6 System Workbench – бесплатная IDE для STM32

Для редактирования, компиляции и отладки программ предназначены специальные интегрированные среды IDE. Большая часть из них является коммерческими продуктами (IAR™ EWARM, Keil™MDK-ARM, Atollic® TrueSTUDIO и другие), но есть и бесплатные инструменты, например, System Workbench производства компании AC6. В рамках системы названий STMicroelectronics данная IDE носит название SW4STM32 .

Интегрированная среда SW4STM32 предназначена для работы с микроконтроллерами STM32. Она основана на базе платформы Eclipse и является бесплатной и кроссплатформенной. Основными ее достоинствами являются :

  • поддержка работы с микроконтроллерами STM32, аппаратными отладочными наборами (STM32 Nucleo, Discovery и Evaluation boards), с программными библиотеками (Standard Peripheral library и STM32Cube HAL);
  • отсутствие ограничений на объем программного кода;
  • бесплатный компилятор GCC C/C++;
  • свободный отладчик GDB (проект GNU);
  • открытая платформа Eclipse IDE с поддержкой групповой разработки встраиваемого ПО с системой контроля версий SVN/GIT;
  • совместимость с плагинами Eclipse;
  • поддержка ST-LINK;
  • мультиплатформенность и совместимость с Windows®, Linux и OS X®.

С помощью SW4STM32 можно редактировать, компилировать и отлаживать программы для STM32. Для этого удобно использовать скелеты программ, создаваемые в STM32CubeMX. Для их импорта следует выполнить простейшие операции: выбрать меню File -> Import, назначить тип импорта «Existing Projects into Workspace», указать директорию проекта, выбрать сам проект и нажать Finish.

При работе с проектами, созданными в STM32CubeMX, следует размещать пользовательский код в специальных секциях:

/*USER CODE BEGIN…*/

/*USER CODE END…*/

Это необходимо делать, чтобы при повторной генерации кода в STM32CubeMX не произошло затирание рукописной части программы. Повторная генерация необходима в двух случаях:

  • при перенастройке используемого МК;
  • при миграции с одного МК на другой.

Таким образом, при работе в связке STM32CubeMX + SW4STM32 пользователь может в любой момент перенастроить контроллер и произвести миграцию с сохранением пользовательского кода при минимальных затратах времени.

При отладке программ в SW4STM32 доступна возможность широкого мониторинга состояния памяти, регистров, переменных. Также среда имеет поддержку точек останова (рисунок 17). Для запуска процесса отладки требуется нажать значок “Debug” (в виде жука), выбрать тип проекта “Ac6 STM32 C/C++ Application”, определить тип отладчика и интерфейс, нажать кнопку “OK”.

SW4STM32 имеет поддержку систем контроля версий SVN/GIT. Это важно для больших проектов, над которыми работает несколько разработчиков. Система контроля версий позволяет: регистрировать все изменения, производимые в проекте; сравнивать версии проектов; восстанавливать предыдущие версии; разрешать конфликты при работе нескольких программистов над одним файлом; вести параллельно несколько версий и так далее.

В рамках данной статьи не имеет смысла углубляться в разбор тонкостей и различий между SVN и GIT. Скажем лишь, что GIT, являясь распределенной системой, позволяет программистам работать локально, имея на рабочей машине полный репозиторий проекта. При этом GIT сохраняет метаданные изменений, что упрощает слияние версий и переключение между версиями. SVN требует наличия сетевого соединения между разработчиками и сохраняет файлы целиком. SW4STM32 обеспечивает поддержку как SVN, так и GIT.

Рассмотрим последовательность действий при подключении проекта к SVN (рисунок 18).

  • в открытом проекте щелкнуть по его названию на панели директорий правой кнопкой мыши и пройти Team → Share Project(s) (рисунок 18а);
  • выбрать тип системы SVN/GIT и нажать “Next” (рисунок 18б);
  • выбрать директорию для SVN и нажать “Next” (рисунок 18в);
  • выбрать директорию хранения проекта в SVN нажать “Finish” (рисунок 18г);
  • на вкладке “General” (рисунок 18д) выбрать URL-адрес SVN, метку для репозитория, имя пользователя, пароль, нажать “Next”;
  • ввести комментарий для проекта, выбрать файл, помещаемый под контроль SVN, нажать “OK” (рисунок 18е).

В дальнейшем для синхронизации файла или всего проекта необходимо щелкнуть по его названию на панели директорий правой кнопкой мыши и выбрать Team → Commit. В открывшемся окне следует написать пояснение к изменениям и нажать “OK”.

Для отключения SVN следует использовать команду Team → Disconnect.

Для импорта проекта из SVN применяется команда меню Import → SVN → Project from SVN. Далее требуется выполнить ряд настроек по импорту во всплывающих диалоговых окнах.

SW4STM32 имеет очень широкие возможности, но у среды есть и недостатки, достаточно характерные для бесплатных сред:

  • отсутствие встроенного симулятора;
  • компилятор GCC проигрывает своим коммерческим собратьям по объему кода и быстродействию;
  • поддержка SW4STM32 со стороны разработчиков не будет столь оперативной, как в случае с платными средами.

Впрочем, стоит отметить, что данные недостатки могут оказаться не такими критичными, особенно для простых проектов.

Отладка кода может производиться не только в SW4STM32, но с помощью дополнительных средств. Рассмотрим некоторые из них.

STMStudio – простой способ отладки приложений на STM32

STM Studio – фирменная утилита производства компании STMicroelectronics, которая помогает проводить отладку программы и позволяет отслеживать значения пользовательских переменных при выполнении кода в реальном времени. Данная программа запускается под ОС Windows и использует отладчик ST-LINK для связи с микроконтроллером.

STM Studio имеет следующие возможности :

  • чтение переменных из ОЗУ «на лету», без влияния на работу пользовательской программы;
  • использование исполнительных файлов.elf, .out, .axf для импорта переменных;
  • вывод значений переменных в табличной и графической форме;
  • графический вывод в виде графиков или диаграмм;
  • возможность вывода зависимостей переменных, когда одна из переменных откладывается по оси Х, а вторая – по оси Y;
  • логирование данных в файл для последующего просмотра.

Окно STM Studio состоит из нескольких панелей (рисунок 19).

Работа с STM Studio начинается с импорта переменных. Для этого в программу необходимо загрузить тот же исполнительный файл, что находится в самом микроконтроллере. Для этого подойдут следующие форматы, которые генерируются при компиляции: .elf, .out, .axf. Далее необходимо выполнить команду File → Import variables. В диалоговом окне при выборе пункта “Expand table elements” пользователь сможет вручную выбрать из предлагаемой таблицы любые глобальные переменные. Для запуска отладки необходимо выполнить команду “Run”.

Как говорилось выше, STM Studio позволяет отображать переменные в трех формах: в виде текста, диаграммы и графика (рисунок 20). Настройка типа отображения может быть изменена в любое время. Кроме того, все данные дополнительно записываются в лог-файл для дальнейшего анализа. Интересной особенностью STM Studio является возможность отображения зависимостей одних переменных от других, а также построения выражений из переменных.

Популярным средством передачи отладочной информации является использование консоли и функции вывода printf().

Реализация терминального вывода printf() через USART

Использование стандартной функции printf() – один из наиболее популярных методов вывода отладочной информации. С помощью данной функции вывода пользователь может передавать любые данные на консоль среды разработки или терминал. Большинство интегрированных сред поддерживает эту возможность. При использовании STM32 есть два способа реализации этого метода: традиционный, с помощью UART, и дополнительный, через SWO-интерфейс с помощью отладчика ST-LINK. Реализация каждого из них максимально упрощается при использовании STM32CubeMX и SW4STM32.

Рассмотрим вначале первый вариант реализации – через UART. Для этого придется выполнить следующую последовательность действий:

  • обеспечить аппаратное подключение к ПК;
  • выполнить настройку UART в среде STM32CubeMX;
  • реализовать саму функцию printf() в среде SW4STM32.

Подключение к ПК можно выполнить тремя путями: через COM-порт и микросхему приемопередатчика RS-232; через USB-порт и микросхему конвертера UART-USB (например, FT232); с помощью USB-интерфейса отладчика ST-LINK. Вне зависимости от того, какой способ выбран, далее необходимо сконфигурировать аппаратный UART.

C помощью STM32CubeMX настройка UART выполняется в несколько кликов (рисунок 21). Сначала на вкладке Pin Wizard соответствующие выводы контроллера переводятся в режим работы UART. Далее во вкладке “Configuration” настраиваются параметры UART: тип обмена, скорость, наличие стоп-битов и так далее. После этого генерируется С-код.

В среде SW4STM32 необходимо подключить стандартную библиотеку и определить функции _io_putchar() и _write(), например, так:

/*USER CODE BEGIN Includes*/

#include

/*USER CODE END Includes*/

/*USER CODE BEGIN 1*/

int __io_putchar(int ch)

c = ch & 0x00FF;

HAL_UART_Transmit(&huart2,&*c,1,10);

int _write(int file, char *ptr, int len)

for (DataIdx = 0; DataIdx < len; DataIdx++)

Достоинствами такого подхода к передаче отладочной информации можно считать:

  • использование интерфейса UART, который присутствует во всех микроконтроллерах STM32 без исключения;
  • простоту настройки и привычность для программистов. Можно использовать старые наработки из проектов с другими контроллерами;
  • отсутствие сложного аппаратного обеспечения (за исключением моста UART-USB или приемопередатчика RS-232);
  • отсутствие сложного ПО. Работа производится со всеми IDE или терминальными программами.

Однако есть у этого метода и недостатки. Во-первых, придется пожертвовать каналом UART для отладки. А во-вторых, такая реализация влияет на работу контроллера, так как занимает ядро для обработки кода функции printf(). В случае с STM32 есть более специализированный, а главное – простой способ, который не занимает ресурсы микроконтроллера – использование связки SWO и ST-LINK.

Реализация терминального вывода printf() через SWO

При использовании связки SWO и ST-LINK создание терминального ввода/вывода оказывается еще проще, чем в рассмотренном выше методе с аппаратным UART. В этом случае связь с ПК осуществляется через интерфейс SWO и USB-интерфейс, используемый в ST-LINK. Последовательность действий остается примерно той же, что и в предыдущем случае.

Сначала с помощью STM32CubeMX происходит настройка выводов SWO-интерфейса во вкладках “Pin Wizard” и “Configuration” (рисунок 22). После этого происходит перегенерация кода для среды разработки.

Следующий шаг заключается в написании кода обработчика __io_putchar(int ch), например, так:

/*USER CODE BEGIN 1*/

int __io_putchar(int ch)

ITM_SendChar(ch);

/*USER CODE END 1*/

Для отладки удобно использовать утилиту STLink Utility (рисунок 23).

Достоинства метода:

  • не требует дополнительных ресурсов и не занимает коммуникационные интерфейсы;
  • работает параллельно с основной программой и не влияет на скорость ее выполнения, так как не использует ядро для вычислений;
  • идеальный выбор для отладочных наборов с ST-LINK на борту, так как представляет готовое решение.

Из недостатков этого метода реализации можно отметить аппаратную зависимость, так как требуется наличие ST-LINK.

Заключение

Компания STMicroelectronics выпускает более семисот моделей микроконтроллеров STM32, которые отличаются по производительности/потреблению/цене/уровню интеграции. Каждый пользователь сможет подобрать себе оптимальную модель с учетом требований конкретного приложения.

Важным преимуществом STM32 является наличие развитой системы средств отладки. К услугам разработчиков предлагается более ста отладочных плат (Nucleo, Discovery, Evaluation Boards). Еще большим подспорьем для программистов станет наличие полного набора бесплатного прикладного ПО для создания, компиляции и отладки программного кода:

ST MCU Finder – приложение для смартфонов, помогающее выбрать наиболее оптимальный МК для конкретного приложения;

STM32CubeMX – кроссплатформенный графический редактор для конфигурирования микроконтроллеров STM32 и автоматической генерации кода. STM32CubeMX также способен оказать помощь при выборе оптимального микроконтроллера, оценить потребляемую мощность и упростить миграцию проекта между различными МК.

SW4STM32 – кросплатформенная интегрированная среда разработки встраиваемого ПО для микроконтроллеров STM32.

STM32 Studio – утилита для отслеживания и графической визуализации значений переменных при выполнении кода в реальном времени.

ST-LINK Utility позволяет совместно с программатором ST-Link выполнять ввод и вывод отладочной информации через SWO-интерфейс.

Данный набор ПО позволяет выполнить полный цикл разработки резидентного ПО, не потратив ни единого рубля.

Литература

  1. Data brief. NUCLEO-XXXXKX. STM32 Nucleo-32 board. Rev 3. ST Microelectronics, 2016.
  2. Data brief. NUCLEO-XXXXRX. STM32 Nucleo-64 board. Rev 8. ST Microelectronics, 2016.
  3. Data brief. NUCLEO-XXXXZX. STM32 Nucleo-144 board. Rev 5. ST Microelectronics, 2017.
  4. UM1718. User manual. STM32CubeMX for STM32 configuration and initialization C code generation. Rev 18. ST Microelectronics, 2017.
  5. UM1884. User manual. Description of STM32L4 HAL and Low-layer drivers. Rev 5. ST Microelectronics, 2016.
  6. UM1025. User manual. Getting started with STM-STUDIO. Rev6. ST Microelectronics, 2013.
  7. UM0892.User manual STM32 ST-LINK utility software description. Rev 22. ST Microelectronics, 2016.